NOTES 1a-3 graphing a parabola by finding the vertex

vertex is easy because the coordinates are in the equation. It is $\underline{(h,k)}$ a, h

EXAMPLE: $y = 1(x-2)^2 - 5$ The vertex point is (2,-5)

To graph follow the "1,3,5 pattern" for parabolas.

Remember, parabolas are symmetrical.

When a quadratic equation is written in STANDARD FORM, $y = ax^2 + bx + c$

we will use the Vertex Formula $\frac{x}{2a} = \frac{1}{2a} = \frac{1}{2a}$ find the x-value of the vertex.

EXAMPLE:

$$y = 2x^2 - 12x + 13$$

The vertex is at (3, y).

Then use substitution to find the y-value.

$$y=2(3)^2-12(3)+13$$

 $y=2(9)-36+13$

To graph follow the "1,3,5 pattern" for parabolas.

BUT, a=2 so we need to double the pattern to a "2, 6, 10 pattern".

When a quadratic equation is written in **FACTORED FORM**, $y = a(x - r_1)(x - r_2)$

The vertex is on the line of symmetry through the midpoint of the x-intercepts.

EXAMPLE: y = (x-1)(x-9)

The x-intercepts are: (1,0)roots, zeroes

Step 2: Average the x-intercepts:

 $\frac{1+9}{2}$ $X = \frac{10}{2} = 5$ Step 3: Use substitution to find the y-value.

The vertex is at (5, y)

OR, if you love the vertex formula, you can rewrite it in standard form, then use the vertex formula.